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Abstract. We consider integrable hierarchies of evolution equations defined with the help of
the hereditary recursion operator which is related to the auxiliary second-order linear eigenvalue
problem with energy-dependent potential. Explicit formulae of symmetry transformations
generated by the shift of the spectral parameter,λ, are derived. We refer to such transformations
as Galilei-type ones this because particular case is the well known Galilei transformation for the
Korteweg–de Vries (KdV) equation. We apply a symmetry method for simultaneous construction
of the invariant solution of the first two members of the KdV hierarchy.

1. Introduction and preliminaries

Symmetries of partial differential equations are used for the description of the general set of
solutions, for description of conservation laws, for producing families of solutions from known
exact solutions, etc [7].

The aim of this paper is to suggest the construction of symmetry transformations of
Galilei-type for some class of integrable evolution equations which is isospectral relative
to the underlying second-order eigenvalue problem with energy-dependent potential. In the
framework of the inverse scattering transformation method, symmetry transformations are
generated by the shift of the spectral parameterλ→ λ− τ . The idea behind this approach is
that the shift of the parameterλ will conserve the form of the auxiliary spectral problem.

Now we explain some relevant notions which are useful throughout this paper. LetM

be a manifold of the smooth vector-functionsu : R→ Cn. We denote byAu, the algebra of
polynomials in the finite collection of variablesuik, where the subscriptk means thek-order
derivative of some functionui = ui(x) with respect to variablex ∈ R.

Definition 1. LetX[u] = (X1[u], . . . , Xn[u])T ∈ TuM is a vector field and3 : TuM → TuM

is a linear operator. The Gateaux derivatives ofX and3 with respect tou in the direction
K ∈ TuM are defined through the relations

X′[u](K) = ∂

∂ε

∣∣∣∣
ε=0

X[u + εK] 3′[u](K) = ∂

∂ε

∣∣∣∣
ε=0

3[u + εK].

Definition 2. The Lie derivatives ofX and3 in the directionK are defined, respectively, as

LKX = X′(K)−K ′(X) LK3 = 3′(K)− [K ′,3].

The linear spaceTuM endowed with the commutator [X, Y ] = LXY bears the structure
of the infinite Lie algebra Vect.
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Definition 3. The operator3 : TuM → TuM is called hereditary if its Nijenhuis torsion
vanishes [6], i.e.

T3(X, Y ) = [3X,3Y ] −3{[3X, Y ] + [X,3Y ]} +32[X, Y ] = 0

for anyX, Y ∈ TuM.

It is known that vector fields3k−1X1 span Abelian subalgebra in Vect if an operator3 is
hereditary andLX13 = 0 [2]. In this case, one can define the hierarchy of commuting flows
as

utk = Xk[u] = 3k−1X1. (1)

In section 2 we investigate the hierarchies of the evolution equations of the form (1)
with recursion operator,3, essentially connected with the auxilliary linear equation (2).
Namely, invariant (with respect to some linear one-parameter point transformation) solutions
to simultaneous sets of equations of integrable hierarchies are discussed.

2. Symmetry transformations generated by the shift of spectral parameter

Let us consider the stationary Schrödinger equation

ψxx(x, λ) + (u(x, λ) + (−λ)n)ψ(x, λ) = 0 (2)

with energy-dependent potentialu(x, λ) = ∑n
i=1 u

i(x)(−λ)i−1. It is known that, for every
n ∈ N, one can associate with equation (2) the hierarchy of completely integrable (isospectral)
systems of evolution equations [4]:

utk = Xk[u] = 3k−1[u]ux (3)

whereu = (u1, . . . , un)T , with the hereditary recursion operator of the form

3[u] =



0 0 . . . 0 1
4∂

2
x + u1 + 1

2u
1
x∂
−1
x

−1 0 . . . 0 u2 + 1
2u

2
x∂
−1
x

0 −1
. . .

... u3 + 1
2u

3
x∂
−1
x

...
. . .

. . . 0
...

0 . . . 0 −1 un + 1
2u

n
x∂
−1
x

 . (4)

In equation (3),X1 = ux and it is evident thatLX13 = 0.
It is worth making a more precise definition of the operator∂−1

x . LetA0
u ⊂ Au be a ring of

differential polynomials in the fieldsui with zero constant terms. We define∂−1
x by requiring

that ∂−1
x (f ) ∈ A0

u for any f = f [u] ∈ Im ∂x ⊂ A0
u. In particular case, if the functions

ui = ui(x) are in the Schwartz spaceS(R) then

∂−1(·) def=
∫ x

−∞
·dx ′.

Let us now define the one-parameter linear transformation of dependent variablesu =
(u1, . . . , un)T

u = A(τ)ū + d(τ) (5)

by the shift of the spectral parameterλ through the relation
n∑
i=1

ui(x)(−λ)i−1 + (−λ)n =
n∑
i=1

ūi(x)(−λ + τ)i−1 + (−λ + τ)n. (6)
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It is easy to see that from (6) it follows that

u1 = F 1(ū, τ ) =
n∑
i=1

ūiτ i−1 + τn

ui+1 = F i+1(ū, τ ) = 1

i!

∂iF 1

∂τ i
i = 1, . . . , n− 1.

(7)

Indeed, if we substitute (7) into the left-hand side of (6) we obtain the Taylor series
∞∑
i=0

1

i!

∂iF 1(ū, τ )

∂τ i
(−λ)i = F 1(ū,−λ + τ).

Writing equation (7) explicitly we obtain transformation (5) in the form

ui = ūi +
∑
k>i

Aik(τ )ū
k + di(τ )

with

Aik(τ ) = Ci−1
k−1τ

k−i di(τ ) = Ci−1
n τ n−i+1

whereCqp
def= p!

(p−q)!q! . From equation (6), it is obvious that the properties

A(−τ) = A−1(τ ) d(−τ) = −A−1(τ )d(τ )

are valid. So, the inverse transformation to (5) reads

ū = A(−τ)u + d(−τ).
The following lemma informs us about the transformation property of3[u] with

respect to (5).

Lemma. The identity

3[u]|u=F(ū,τ ) = A(τ)(3[ū] + τ)A−1(τ ) (8)

holds.

Proof. It is easy to check (8) by straightforward computation rewriting it, for convenience, as

3[u]|u=F(ū,τ )A(τ) = A(τ)(3[ū] + τ). (9)

Element-wise, relation (9) is written as

(1n) : ( 1
4∂

2
x + u1 + 1

2u
1
x∂
−1
x )|u1=F 1(ū,τ ) = ( 1

4∂
2
x + ū1 + 1

2 ū
1
x∂
−1
x )

+
n∑
i=2

C0
i−1τ

i−1(ūi + 1
2 ū

i
x∂
−1
x ) +C0

n−1τ
n−1

(kn) : (−1)Ck−2
n−1τ

n−k+1 + (uk + 1
2u

k
x∂
−1
x )|uk=Fk(ū,τ ) = (ūk + 1

2 ū
k
x∂
−1
x )

+
n∑

i=k+1

Ck−1
i−1 τ

i−k(ūi + 1
2 ū

i
x∂
−1
x ) +Ck−1

n−1τ
n−k+1 k = 2, . . . , n

(1l) : 0= C0
l−1τ + (−1)C0

l τ l = 1, . . . , n− 1

(kl) : (−1)Ck−2
l−1 τ

l−k+1 = Ck−1
l−1 τ

l−k+1 + (−1)Ck−1
l τ l−k+1 l > k + 1< n,

(kk) : (−1)Ck−2
k−1τ = τ + (−1)Ck−1

k τ k = 1, . . . , n− 1

(k − 1, k) : −1= −1 k = 2, . . . , n− 1

(k, l) : 0= 0, k 6 l − 2
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which is evidently valid. �

Taking into account (8) we derive evolution equations for the fieldsūi in the form

ūtk = (3[ū] + τ)k−1ūx =
k−1∑
r=0

Crk−1τ
k−r−13r [ū]ūx . (10)

It should be noted that integral operator∂−1
x , which now acts on Im∂x ⊂ A0

ū is uniquely defined
by the condition

F−1
∗ ◦ ∂−1

x (f ) ∈ A0
u (11)

where the mapF∗ : Au → Aū and its inverseF−1
∗ : Aū → Au are generated by (7). Now we

can compute the vector fields3r [ū]ūx , keeping in mind condition (11), for every fixedr ∈ N.
From the explicit form of the recursion operator (4) it is obvious that3r [ū]ūx are expressed
in terms of the vector fieldsXk[ū] as

3r−1[ū]ūx = Xr [ū] +
r−1∑
m=1

armτ
r−mXm[ū] (12)

where the coefficientsarm depend only onn. Substituting (12) into (10) we obtain evolution
equations

ūtk = Xk[ū] +
k−1∑
l=1

bklτ
k−lXl [ū]

with some coefficientsbkl to be determined.
Let us take anyN > 2 and consider the set of the first(N − 1) systems

ūt2 = X2[ū] + b21τ ūx

ūt3 = X3[ū] + b32τX2[ū] + b31τ
2ūx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ūtN = XN [ū] + bN,N−1τXN−1[ū] + · · · + bN1τ
N−1ūx .

(13)

For everyN > 2 we complete (5) by adding linear transformation of independent variables
(x, t2, . . . , tN )

x̄ = x + b21τ t2 + b31τ
2t3 + · · · + bN1τ

N−1tN

t̄2 = t2 + b32τ t3 + b42τ
2t4 + · · · + bN2τ

N−2tN

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t̄N = tN .

(14)

Taking into account (13) and (14) we have

ūt̄2 = X2[ū],

ūt̄3 + b32τ ūt̄2 = X3[ū] + b32τX2[ū],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ūt̄N + bN,N−1τ ūt̄N−1 + · · · + bN2τ
N−2ūt̄2 = XN [ū] + bN,N−1τXN−1[ū] + · · · + bN2τ

N−2X2[ū],

from which we easily obtain

ūt̄k = Xk[ū] k = 2, . . . , N.

Summarizing the above, we can state the following corollary.
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Corollary. The simultaneous set of equations

ut2 = X2[u] = 3[u] ux
. . . . . . . . . . . . . . . . . . . . .

utN = XN [u] = 3N−1[u]ux

(15)

are invariant with respect to the linear one-parameter transformation(5), (14).

So, if we know some solutionu(x, t2, . . . , tN ) of (15) we can construct a one-parameter
solution family

u(τ ; x, t2, . . . , tN ) = A(τ)u(x̄, t̄2, . . . , t̄N ) + d(τ) (16)

where the collection of variables(x̄, t̄2, . . . , t̄N ) is expressed via(x, t2, . . . , tN ) by virtue
of (14).

Example 1. Let us takeN = 2. In this case, in the following formula we need

∂−1
x (ūnx) = ūn + nτ (17)

which follows from condition (11) since

F−1
∗ (ūn + nτ) = un ∈ A0

u.

Using (17) we have

3[ū]ūx = X2[ū] +
n

2
τ ūx

and

ūt2 = (3[ū] + τ) ūx = X2[ū] +
(n

2
+ 1
)
τ ūx.

Thus, the transformation of dependent variables (5) should be completed by transformation
for variables(x, t2), as follows:

x̄ = x +
(n

2
+ 1
)
τ t2

t̄2 = t2.
(18)

(i) For n = 1, (5), (18) become the well known Galilei transformation (see, for example, [5])

ū = u− τ
x̄ = x + 3

2τ t2

t̄2 = t2
for the KdV equation

ut2 = 1
4uxxx + 3

2uux. (19)

(ii) In the casen = 2, we have the transformation:

ū1 = u1− u2τ + τ 2

ū2 = u2 − 2τ

x̄ = x + 2τ t2
t̄2 = t2

for the Kaup system [1,3]

u1
t2
= 1

4u
2
xxx + u1u2

x + 1
2u

2u1
x

u2
t2
= −u1

x + 3
2u

2u2
x.

(20)
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Example 2. Let us takeN = 3. In this case, we are in a position to search for the symmetry
transformation for the pair of systems:

ut2 = X2[u] = 3[u]ux
ut3 = X3[u] = 32[u]ux.

To compute3[ū]X2, in the following formulae we need:

∂−1
x ( 1

4ūxxx + 3
2 ūūx) = 1

4ūxx + 3
4(ū)

2 − 3
4τ

2 (21)

for n = 1 and

∂−1
x (−ūn−1

x + 3
2 ū

nūnx) = −ūn−1 + 3
4(ū

n)2 + ( 1
2n(n− 1)− 3

4n
2)τ 2 (22)

for n > 2. Using (21) and (22) we obtain†

32[ū]ūx = 3[ū]X2 +
n

2
τ3[ū]ūx

= X3 +

(
1

4
n(n− 1)− 3

8
n2

)
τ 2ūx +

n

2
τ
(
X2 +

n

2
τ ūx

)
= X3 +

n

2
τX2 +

(
1

4
n(n− 1)− 1

8
n2

)
τ 2ūx

and

ūt3 = (3[ū] + τ)2 ūx
= 32[ū]ūx + 2τ3[ū]ūx + τ 2ūx

= X3 +
(n

2
+ 2
)
τX2 +

1

2

(n
2

+ 1
) (n

2
+ 2
)
τ 2ūx .

Then, the transformation of variables(x, t2, t3) (14) takes the form

x̄ = x +
(n

2
+ 1
)
τ t2 +

1

2

(n
2

+ 1
) (n

2
+ 2
)
τ 2t3

t̄2 = t2 +
(n

2
+ 2
)
τ t3

t̄3 = t3.
Next, we compute the coefficientsbkl in explicit form. First, we computebk,k−1.

Using (10) and (12) we obtain:

ūtk = 3k−1[ū]ūx + (k − 1)τ3k−2[ū]ūx + O(τ 2)

= 3k−2
(
X2 +

n

2
τ ūx

)
+ (k − 1)τ3k−2ūx + O(τ 2)

= 3k−2X2 +
(n

2
+ k − 1

)
τ3k−2ūx + O(τ 2)

= Xk +
(n

2
+ k − 1

)
τXk−1 + O(τ 2). (23)

In equation (23) we have taken into account that

3[ū]X2 = X3 + O(τ 2)

which follows from (21), (22). From (23) we obtain thatbk,k−1 = ( n2 + k − 1).

† We write3,Xk instead of3[ū], Xk [ū] so no confusion can arise.
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Now let us rewrite (14) in the vector form̄t = BN(τ)t, wheret = (x, t2, . . . , tN )T and
BN(τ) is the upper diagonal matrix

BN(τ) =


1 b21τ . . . bN1τ

N−1

0 1
. . .

...
...

. . .
. . . bN,N−1τ

0 . . . 0 1

 .
We must require the validity of the group property

BN(τ)BN(τ1) = BN(τ + τ1)

which can be written element-wise as

br+k,k(τ + τ1)
r = br+k,k

(
τ r +

r−1∑
i=1

Cirτ
iτ r−i1 + τ r1

)

= br+k,kτ r +
r−1∑
i=1

bk+r,k+ibk+i,kτ
iτ r−i1 + br+k,kτ

r
1 . (24)

From (24) one sees that the relation

Cirbr+k,k = br+k,k+ibk+i,k (25)

must be fulfilled for eachi = 1, . . . , r − 1. As can be checked, the solution of equation (25)
is given by

bk+r,k = 1

r!

r∏
i=1

bk+i,k+i−1 = 1

r!

r∏
i=1

(n
2

+ k + i − 1
)
.

So, we found matrixBN(τ) for anyN > 2.

3. Invariant solutions of KdV hierarchy equations

In section 2 we presented Galilei-type symmetry transformations, which are applicable for
all members of integrable hierarchies generated by the recursion operator (4). Let us apply
a symmetry method for construction of the simultaneous solutionu(x, t2, t3) of the first two
members of the KdV hierarchy, which is invariant with respect to the corresponding Galilei-
type group.

Consider a one-parameter group

ū = u− τ x̄ = x + 3
2τ t2 + 15

8 τ
2t3 t̄2 = t2 + 5

2τ t3 t̄3 = t3 (26)

with generator

v = − ∂

∂u
+

5

2
t3
∂

∂t2
+

3

2
t2
∂

∂x
.

It is easy to compute the differential invariants of this group. Namely, we have

ξ = t3 z = xt3− 3
10t

2
2 w = t3u2 + 4

5t2u + 8
15x. (27)

Solving the quadratic equation

t3u
2 + 4

5t2u + ( 8
15x − w) = 0

we obtain

u = −2t2
5t3
± (t3w −

8
15z)

1/2

t3
w = w(z, ξ). (28)
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It is convenient to use the ansatzv = v(z, ξ) = ±(ξw − 8
15z)

1/2.
Substituting (28) into the third-order KdV equation (19) we obtain that it reduces to the

parameter-dependent first Painlevé equation (PI )

vzz = − 1

ξ3

(
3v2 +

8

5
z + c(ξ)

)
(29)

wherec(ξ) is an arbitrary function—‘constant of integration’.
Let us now substitute (28) into the fifth-order KdV equation

ut3 = 1
16u

(V )
x + 5

8uuxxx + 5
4uxuxx + 15

8 u
2ux. (30)

Taking into account equation (29) we arruve at the linear (!) evolution equation

vξ = −
(

6z

5ξ
+
c(ξ)

8ξ

)
vz +

3

5ξ
v.

Simple calculations show that the compatibility conditionvzzξ = vξzz is equivalent to
equationξc′(ξ) = c(ξ), whose solution is a homogeneous linear function ofξ . We put
c = 8µξ , whereµ is an arbitrary constant.

Thus we can state that the ansatz

u(x, t2, t3) = −2t2 + 5v(z, ξ)

5ξ
ξ = t3 z = xt3− 3

10
t22

gives simultaneous invariant solutions of equations (19) and (30) provided that the function
v = v(z, ξ) satisfies the pair of compatible equations:

vzz = − 1

ξ3

(
3v2 +

8

5
z + 8µξ

)
vξ = −

(
6z

5ξ
+µ

)
vz +

3

5ξ
v.

(31)

It can be checked that the solution of (31) is given by

v(z, ξ) = af (Z) Z = bz + c

wheref = f (Z) is a solution of thePI equation in its standard form

f ′′ = 6f 2 +Z

a = −2ε2ξ3/5 b = εξ−6/5 c = 4µε−4ξ−1/5 whereε = ( 4
5)

1/5.

4. Conclusion

The results of this paper are explicit formulae presenting the symmetry transformations of
integrable evolution equations constructed with the help of the recursion operator. These
transformations are generated by the shift of the spectral parameterλ→ λ−τ . We would like
to note that these transformations cannot be applied for a single equation in hierarchy, excluding
the case of the first nontrivial member in each hierarchy such as the KdV equation (19) or the
Kaup system (20).

We believe that this approach can be applied to integrable hierarchies associated with
auxiliary eigenvalue problems of order greater than two.
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