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Abstract. We consider integrable hierarchies of evolution equations defined with the help of
the hereditary recursion operator which is related to the auxiliary second-order linear eigenvalue
problem with energy-dependent potential. Explicit formulae of symmetry transformations
generated by the shift of the spectral parameteare derived. We refer to such transformations

as Galilei-type ones this because particular case is the well known Galilei transformation for the
Korteweg—de Vries (KdV) equation. We apply a symmetry method for simultaneous construction
of the invariant solution of the first two members of the KdV hierarchy.

1. Introduction and preliminaries

Symmetries of partial differential equations are used for the description of the general set of
solutions, for description of conservation laws, for producing families of solutions from known
exact solutions, etc [7].

The aim of this paper is to suggest the construction of symmetry transformations of
Galilei-type for some class of integrable evolution equations which is isospectral relative
to the underlying second-order eigenvalue problem with energy-dependent potential. In the
framework of the inverse scattering transformation method, symmetry transformations are
generated by the shift of the spectral paramgtes L — 7. The idea behind this approach is
that the shift of the paramet&mwill conserve the form of the auxiliary spectral problem.

Now we explain some relevant notions which are useful throughout this papeM Let
be a manifold of the smooth vector-functioms R — C". We denote bw,, the algebra of
polynomials in the finite collection of variableg, where the subscrigt means the-order
derivative of some function’ = u’(x) with respect to variable € R.

Definition 1. LetX[u] = (XY[u], ..., X"[u])” € T,M isavectorfieldand\ : T,M — T,M
is a linear operator. The Gateaux derivativesXfand A with respect ta: in the direction
K € T, M are defined through the relations

0 d
X'u](K) = —| X[u+eK] ANu](K) = —| Alu+¢K].
de e=0 de e=0
Definition 2. The Lie derivatives ok and A in the directionk are defined, respectively, as
LxX =X'(K) - K'(X) LxA =A'(K)—[K', A].
The linear spac&, M endowed with the commutatoX[ Y] = LxY bears the structure
of the infinite Lie algebra Vect.
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Definition 3. The operatorA : T,M — T,M is called hereditary if its Nijenhuis torsion
vanishes [6], i.e.

Ta(X,Y) =[AX, AY] — A{{[AX, Y] +[X, AY]} + A?[X, Y] =0
foranyX,Y e T,M.
It is known that vector field&*~1X; span Abelian subalgebra in Vect if an operatois

hereditary and.x, A = 0 [2]. In this case, one can define the hierarchy of commuting flows
as

Uy, = X [u] = Ak_lX]_. ()

In section 2 we investigate the hierarchies of the evolution equations of the form (1)
with recursion operatorA, essentially connected with the auxilliary linear equation (2).
Namely, invariant (with respect to some linear one-parameter point transformation) solutions
to simultaneous sets of equations of integrable hierarchies are discussed.

2. Symmetry transformations generated by the shift of spectral parameter

Let us consider the stationary Sodinger equation
Y (6, A) + (u(x, ) + (=0)") P (x, 1) =0 (2)

n

with energy-dependent potentialx, A) = ", u'(x)(—1)'~1. It is known that, for every
n € N, one can associate with equation (2) the hierarchy of completely integrable (isospectral)
systems of evolution equations [4]:

g = Xp[u] = A Huduy 3)
whereu = (u?, ..., u™)”, with the hereditary recursion operator of the form
0 0 ... 0 z32+u'+3uld?
-1 0 0 u? + 2u?y-1
Alul=] 0 -1 " ud+ udy : 4)
: .0 :
0 ... 0 -1  w'+3umd;?

In equation (3) X1 = u, and itis evident that x, A = 0.

Itis worth making a more precise definition of the operafot. Let A2 c A, be aring of
differential polynomials in the fields’ with zero constant terms. We defifig! by requiring
thatd_1(f) € A% forany f = f[u] € Ima, c AS. In particular case, if the functions
u' = u(x) are in the Schwartz spac&R) then

971 ":ef/ dy’.
Let us now define the one-parameter linear transformation of dependent variables
@, ..., umT
u=A@i+d®) (5)
by the shift of the spectral parametethrough the relation

n n

DU N TN =) w0 (A D) T (—a ) (6)

i=1 i=1
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It is easy to see that from (6) it follows that

n
wt=Fla, 1) =) it +r"

= @)
10'F .
i=1....,n—1

il ot
Indeed, if we substitute (7) into the left-hand side of (6) we obtain the Taylor series

= F"a, 1) =

Z 19 Fl(u 7)
= il aT!

Writing equation (7) explicitly we obtain transformation (5) in the form
=i+ Z Al (D" +d' (1)

(=2 = FYa, —x +1).

k>i
with
Al(r) = Cj_ T d'(r) = Ci e
whereC} gef ﬁ. From equation (6), it is obvious that the properties

A=A d=1) =-A"YD)d (1)
are valid. So, the inverse transformation to (5) reads
u=A(—tu+d(—1).

The following lemma informs us about the transformation propertyA¢f] with
respect to (5).

Lemma. The identity
Alu]lu=ra.cy = A@)(Ai] + T) AN (T) (8)
holds.

Proof. Itis easy to check (8) by straightforward computation rewriting it, for convenience, as
A[u]|u=F(ﬁ,f)A(f) = A(‘L’)(A[IZ] + t)~ (9)
Element-wise, relation (9) is written as

(In) 1 (GO +ut + Jutd; Dluopigr = (G072 + it + 310, )
+ Z Co vt + oy + et

(kn) : (—DC " F 4+ F + 3k o Yo = @ + Sikah

+ch Rt + ket + et k=2,...,n
i=k+1
) :0=CP T+ (-1)CPr I=1,...,n—1
(kl):(—l)Clk 12Tl k+1 Czk 11— k+1+( 1)Ck 1_1—k+1 [>k+1<n,
(kk) : (=1)CF 2t =t + (-D)CF e k=1,...,n—1
k—1k:-1=-1 k=2,...,n—1
(k,):0=0,k<l—2
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which is evidently valid. a

Taking into account (8) we derive evolution equations for the figida the form
k=1
ity = (Ali] + 1) ity = Y Cfy Tt A [ (10)
r=0
It should be noted that integral operadigrt, which now acts on Ind, ¢ A%is uniquely defined
by the condition

Flod M (f) e A? (11)

where the magF, : A, — A; and its inverseF 1 : A; — A, are generated by (7). Now we
can compute the vector fields'[u]i,, keeping in mind condition (11), for every fixede N.
From the explicit form of the recursion operator (4) it is obvious theti]iz, are expressed
in terms of the vector fieldX,[u] as
r—1
N )ity = X, [a] + Y apmt" ™" X [il] (12)
m=1
where the coefficients,,, depend only om. Substituting (12) into (10) we obtain evolution
equations

k—1
ity = Xeli] + ) but* ™' X [i]
=1

with some coefficientsy,; to be determined.
Let us take any > 2 and consider the set of the fi(gt — 1) systems

iy, = Xo[u] + botit,

ity = Xalit] + baot Xo[it] + bart?it, (13)

i, = Xyli] + by -1t Xy a[i] + - - - + byt i,
For everyN > 2 we complete (5) by adding linear transformation of independent variables
(x,t2,...,tN)
X =x+byttr+ b311’2t3 +..-+byiT
=1t + byottz + b42‘L’2t4 +..-+byoT

=z

-1

(14)
Taking into account (13) and (14) we have
L_‘fz = XZ[’Z]’
1253 + b32Tﬁf2 = X3[12] + b321’X2[L_{],

iy + by n_1Tilgy |+ -+ byt Py, = Xyli] + by y-1T Xy-ali] + - - - + byt VX i),
from which we easily obtain
ui, = Xi[u] k=2,...,N.

Summarizing the above, we can state the following corollary.
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Corollary. The simultaneous set of equations
u;, = Xolul = Alu] uy
..................... (15)

are invariant with respect to the linear one-parameter transformag)n(14).

So, if we know some solution(x, ,, . .., ty) of (15) we can construct a one-parameter
solution family

u(t; x,to, ..., tn) = A u(x, to, ..., ty) +d(1) (16)

where the collection of variable&, 1,, ..., ty) is expressed vidx, 1o, ..., ty) by virtue
of (14).

Example 1. Let us takeV = 2. In this case, in the following formula we need
d- ") = i" +nt 17)
which follows from condition (11) since
F*’l(ﬁ” +nt)=u" € AS.
Using (17) we have
Alidlii, = Xo[id] + %rﬁx
and
it,, = (A[i] + 7) ity = Xo[i] + (g + 1) Tii,.

Thus, the transformation of dependent variables (5) should be completed by transformation
for variables(x, 1,), as follows:

n
F=x+(=+
= (2 1)z (18)
r = 1.
(i) For n = 1, (5), (18) become the well known Galilei transformation (see, for example, [5])
U=u—rt
XxX=x+ %rtz
=1t
for the KdV equation
Uy, = %uxxx + %uu)p (19)

(i) Inthe casen = 2, we have the transformation:

it =ul —ulr +1?
2 =u’-2t
X =x+2tt
=1z
for the Kaup system [1, 3]
1 1.2 12,1 .21
utz2 = ZUxy -l;’uzu)zc + SuuUy (20)

— 1
U, = —uy +suu.
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Example 2. Let us takeV = 3. In this case, we are in a position to search for the symmetry
transformation for the pair of systems:

u, = Xolu] = Alu]u,
u, = Xa[u] = A%[ulu,.

To computeA[i] X, in the following formulae we need:
0 (Fllnx + 30l = Fily + 3@ = §7° (21)
forn =1and
O (it St = —a Tt + @+ (Gn(n — 1) — $n?)7? (22)
forn > 2. Using (21) and (22) we obtain
Aid)i, = A[a] X + %;A[ﬁ]ﬁx
= X3+ (%n(n -1 - gn2> rzﬁx + gr <X2 + %tﬁx)
= X3+ I%TXZ + <%n(n -1 — %n2> tzﬁx
and
i, = (Ala] + ©)% i,

= A?[a]a, + 2t Ald]i, + t2i,

=X3+<g+2>rxz+%(%+1) <g+2)12ﬁx.

Then, the transformation of variablés, 1., t3) (14) takes the form

e (Be e () (o)

Next, we compute the coefficients,; in explicit form. First, we computey ;1.
Using (10) and (12) we obtain:

i, = A i, + (k — DT A ?[a)i, + O(t?)
— Ak-2 (x2 + %mx) +(k — )T A* 2, + O(1?)
) n _ k—2- 2
—A X2+(2+k 1)tA i, +0(r?)
n
=X, + (E +k— 1) X, 1+ O(1). (23)
In equation (23) we have taken into account that
Ali] X2 = X3+ O(t?)
which follows from (21), (22). From (23) we obtain that, 1 = (5 +k — 1).

T We write A, X, instead ofA[u], X,[i] so no confusion can arise.
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Now let us rewrite (14) in the vector forin= By (t)t, wheret = (x, o, ..., ty)" and
By (1) is the upper diagonal matrix
1 byt ... le‘L'N_l
1
By =%
: . by n-1T
o ... O 1

We must require the validity of the group property
By(t)Bn(t1) = By(T +71)
which can be written element-wise as

r—1
brai k(T + 711" = braik (Tr + Z C;'Titlrii + T{)
i=1
r—1 . ,
= b it + Z bictrkriDiri k T' T+ Brage kT4 - (24)
i=1
From (24) one sees that the relation
Cibrsi i = brskksibisi (25)

must be fulfilled for eacth = 1, ..., r — 1. As can be checked, the solution of equation (25)
is given by

bk+r,k = r_ll Ebkﬂ',kﬂ'l = r_ll E (g tk+i— 1) :

So, we found matrixBy (t) forany N > 2.

3. Invariant solutions of KdV hierarchy equations

In section 2 we presented Galilei-type symmetry transformations, which are applicable for
all members of integrable hierarchies generated by the recursion operator (4). Let us apply
a symmetry method for construction of the simultaneous solutianz,, r3) of the first two
members of the KdV hierarchy, which is invariant with respect to the corresponding Galilei-
type group.
Consider a one-parameter group

U=u—rt i:x+§tt2+1§512t3 t_2=tz+g‘l.'l3 3=13 (26)

with generator

0,5 9,3 3
du 2301, 2°%9x

It is easy to compute the differential invariants of this group. Namely, we have

3.2 2.4 8
E=1n 7 = xI3 — 3515 w = t3u” + tou + jxx. 27)

Solving the quadratic equation
tau® + gtzu + (l%x —w)=0
we obtain
2ty (taw — £2)V/2

n=—g w = w(z, £). (28)
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Itis convenient to use the ansatz= v(z, §) = +(Ew — Z2)¥2.
Substituting (28) into the third-order KdV equation (19) we obtain that it reduces to the
parameter-dependent first Pairéeaquation ;)

1 8
v =5 (3v2 tgat c(s)) (29)
wherec(§) is an arbitrary function—'constant of integration’.

Let us now substitute (28) into the fifth-order KdV equation

1. (V)5 5 15 2
Uy = —61456 )+ FUU iy + JUilyy + FU U (30)

Taking into account equation (29) we arruve at the linear (!) evolution equation

_ 6z c(&) 3
(e ) e

Simple calculations show that the compatibility conditiog: = ve,. is equivalent to
equationéc’(¢) = c(&¢), whose solution is a homogeneous linear functiorg of We put
¢ = 8ué, wherep is an arbitrary constant.
Thus we can state that the ansatz
—2t5 +50(z, &) 3,
S, f3) = ———————=~ =t = xt3 — —t
u(x, 1z, 13) 5 E=13 z=xl3— 3502
gives simultaneous invariant solutions of equations (19) and (30) provided that the function
v = v(zg, &) satisfies the pair of compatible equations:

1 , 8
Vzz = _%__3 (31) + §Z+8ﬂé>

6z 3
Vg = — §+u vz+§v.

It can be checked that the solution of (31) is given by

(1)

v(z,§) =af(2) Z=bz+c
wheref = f(Z) is a solution of theP, equation in its standard form

f// — 6f2 + Z
a = —2%%/° b =g 8" c=4ps Y5 whereg = (é)l/s.

4. Conclusion

The results of this paper are explicit formulae presenting the symmetry transformations of
integrable evolution equations constructed with the help of the recursion operator. These
transformations are generated by the shift of the spectral parainetex — . We would like
to note that these transformations cannot be applied for a single equation in hierarchy, excluding
the case of the first nontrivial member in each hierarchy such as the KdV equation (19) or the
Kaup system (20).

We believe that this approach can be applied to integrable hierarchies associated with
auxiliary eigenvalue problems of order greater than two.
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